
ISSN 0265-2919 

= 

SHENAE BEES aN HMMS Ha 

BRE IE RSS Pn nomen hCard 

SHIFT. 

Agia! 



provided with a built-in program that 
operates their vital housekeeping routines 

range of Atari computers 

MEMORY MANAGERS Introducing a 
new series on how the computer creates 
and manages files 

LINES OF ENQUIRY Continuing our 
analysis of how business software can 
handle company stock control 

ON THE LEVEL We design our own 
error checking circuit 

FROM BIT TO BREADBOARD 
A weekly glossary of computing terms 

MODES OF ADDRESS We explain 
addressing modes — an essential feature of 
machine code programming 

BRANCHING OUT The Tandy 
Corporation has developed from a small 
electrical retailer to a multinational 
computer company 

TESTING TIME We pause to recap before 
tackling more advanced projects 

Editor Max Phillips; Art Director David Whelan; Production Editor Catherine Cardwell; Staff Writer Brian Morris; Picture Editor Claudia Zeff: Dixon; Editorial Assistant Stephen Malone; Contributors Lisa Kelly, Steven Colwill, Geoff Bains, Tony Harrington, Richard Pawson, Mike Wesley; Consultant Editor Gareth Jefferson; Group Art Director Perry Neville; Managing Director 
Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator 

et, London W1P 1LB; © APSIF Copenhagen 1984; © Orbis Publishing Ltd 1984: Typeset by Universe; 

Stephen England; Pulllished by Orbis Publishing Ltd: Editorial Director Brian Innes; Project 

Printed 

HOME COMPUTER ADVANCED COURSE - Price UK IR £1.00 AUS $1.95 NZ $2.25 SA.R1.95 SINGAPORE $4.50 USA and CANADA $1.95 
COURSE - Copies are obtainable by placing a regular order at your newsagent, or by takin How to obtain your copies of HOME COMPUTER ADV. 

SMOOTH OPERATORS Computers are 

ATARI UPDATE We review the new XL 

money Ye sia iy elo — area by Bunch Partworks Ltd; Editorial Office 85 Charlotte Stre 

194 COVER PHOTOGRAPHY BY PAUL CHAVE 

Next Week 
© Sharp’s PC-5000 uses the 
very latest technology to 
bring you one of the most 
powerful portables ever. We 
look at a machine that has 
brought desktop computing 
Capacity to the portable 
world. 

© In the first of a series on 
graphics for all the popular 
micros, we look at a 
submarine hunter game for the 

i — é “<! - eee 
TET ee — 

ei
 

© Video discs and laser discs 
combined with home 

computers promise to make 
large quantities of information 
more accessible in the home 
than ever before. 

COMING 
VERY SOON 

issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required. Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE & MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax. COMPUTER ADVANCED How to obtain binders for HOME 

Springfield 2137. 
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to kee 

local taxes, which are not included in the above prices unless stated. 

COURSE - UK and Eire: Please send £3.95 per binder if 
binder (incl. p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: 
COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of h 
Chandos Street, St. Leonards, NSW 2065. The binders supplied are those illustrated in the magazine. N 
Gotch (NZ) Ltd, PO Box 1595, Wellington. SOUTH AFRICA: Binders are available through any bran 

Binders are obtainable throu 
you do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7. EUROPE: Write with remittance of £5.00 per 

gh your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED 
ow to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23 EW ZEALAND: Binders are available through your local newsagent or from HOME COMPUT 

ch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED C 

p the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or 

Designers Hazel Bennington, Julian Dorr; Sub Editor Robert Pickering; Art Assistant Liz 

lan Paton; Circulation Director David Breed; Marketing 
Reproduction by Mullis Morgan Ltd; 

g out a subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52 

ER ADVANCED COURSE BINDERS, Gordon & 
OURSE BINDERS, Intermag, PO Box 57394, 

—— 

2 

a —____4 



The operating system is a vital part of an 
computer because it forms a link between 
the hardware and software. Yet because 
operating systems do most of their work in 
the background, many people, especially 
home computer users, are hardly aware they 
exist. To help put the record straight we 
present an overview of operating systems. 

High-level languages allow the programmer to be 
isolated from the inner workings of the CPU and 
make for greater portability of programs between 
one system and another. Provided that a language 
is reasonably standardised, instructions should 
work on any machine supporting the language. 
The interpreter or compiler that processes the 
high-level language source code takes care of the 
details of memory allocation and so on. The high- 
level interpreter or compiler is also a program and 
it must be loaded into main memory before it can 
convert the high-level source code into object 
code instructions ready for execution. BAsics in 
ROM are already, permanently, present in 
memory and ready for use as soon as the machine 
is switched on. 

However, there’s more to operating a computer 

than just having a program in it able to convert 
source code into machine code. There needs to be 
yet another program running in the background 
that concerns itself with the ‘housekeeping’. As an 
example of housekeeping, consider the problem 
of getting a letter typed in on the keyboard to 
appear on the screen. Somewhere in memory 
there has to be a program telling the CPU 
constantly to check the keyboard to see if a key 
has been pressed. If one has, the program has to 
work out which key it was, and then it has to 
instruct the video circuitry to produce the right 
pattern of dots, in the right sequence, for output 
to the screen. Activities such as this are said to be 
‘transparent’ to the user. 

Similarly, when a command such as CSAVE is 
issued to save a file on cassette, the programmer is 
not concerned about how the data is converted 
into a form suitable for cassette storage; it’s all 
part of the operating system. 

The operating system is the background 
program that runs continuously, supervising 
everything else. A slight source of confusion 
arises when the computer in question is a ROM- 
based small computer system with a built-in 
BASIC, because the Basic and the operating system 
are often held on the same ROM. In its simplest 

PAUL CHAVE 

The Manager 
Every computer has some form 
of operating system — a 
program that manages the 
running of the computer and 
controls all the devices attached 
to the system 

THE HOME COMPUTER ADVANCED COURSE 181 



form, then, an internal ROM will contain all the 
software neded to run the system, apart from 
applications programs (games, word processors 
etc.) loaded in or written by the user. Part of this 
ROM will contain the code needed for converting 
applications programs written in BASIC into 
machine code (the interpreter); part will contain 
the code needed for entering and modifying user- 
written programs (the editor); and part will 
contain the housekeeping software needed for 
looking after the keyboard, displaying characters 
and graphics, accepting data from cassettes and 
allocating it to the right parts of memory and so 
on (the monitor). 

The term ‘monitor’, not to be confused with a 
television or display monitor, is roughly 
synonymous with ‘operating system’. In its 
simplest form, the monitor is able to do little more 
than accept instructions in machine code, place 
them in the right memory location, and supervise 
their execution. Once the housekeeping becomes 
a little more advanced than this, the monitor itself 
tends to be referred to as the operating system. 

At the other extreme are the disk-based 
computers, often used in offices as small business 
systems, which have powerful operating systems. 
Before considering intermediate computers such 
as the Apple, we will consider the kind of 
operating system needed by a disk-only system. 
A computer system entirely based on floppy 

disks for its software will normally have very little 
stored permanently in ROM apart from a 
bootstrap loader (see page 188) and a few 
housekeeping routines. When such a computer is 
switched on, the bootstrap loader contains just 

182 THE HOME COMPUTER ADVANCED COURSE 

enough machine code to instruct the CPU how to 
access a disk drive and load the operating system 
into main memory. 

The operating system loaded into RAM has to 
be able to do more than the operating systems in 
more conventional ROM-based systems. It 
becomes what is called a DOS or disk operating 
system. An operating system such as this extends 
normal housekeeping functions by adding 
commands that act directly on the files stored on 
the disk. The kind of commands expected from a 
disk operating system include commands to list 
the names of the files stored on the disk, to erase 
or re-name files, and to copy files from the disk 
into main memory or onto other disks. 

The operating systems of simpler, ROM-based 
systems usually do not have such sophisticated 
file-handling commands, and may have nothing 
more than a simple command to load a named 
file from tape or to store a file under a given name 
on a tape. A sophisticated operating system will 
know the exact address location on disk or tape 
storage where any file is stored. Less advanced 
operating systems may be able to do nothing 
more than search through all the files present until 
the one named is encountered, and then load it: 
or to write a file under a given file name on the 
tape at whatever point the tape happens to be 
when the command is issued. 

Computer systems intermediate between the 
two are well exemplified by the BBC Micro, 
which is equally adept at handling cassette or disk 
files, using largely the same commands. The 
operating system resides in a ROM, but it is a 
physically separate ROM and can be thought of 

Operation 
Controls 
CP/M is constructed in layers to 
enable both itself and the 
programs written for it to be 
moved easily from one micro to 
another. The user’s program 
works through the BDOS (Basic 
Disk Operating System), a set 
collection of routines that 
provide standard functions and 
facilities for the program. The 
BDOSisthesameinall — 
machines, so a program that 
uses it will work on any CP/M 
system. When the BDOS needs 
to perform a particular task, it 
calls the BIOS (Basic Input/ 
Output System). This is 
specially adapted for every 
machine and is the software link 
between the BDOS and the 
physical components of the 
computer. 

CP/M also includes the CCP 
(Command Control Program), 
which allows the user to enter 
commands to run programs, 
rename and delete files and 
generally control the computer 
system 

KEVIN JONES 



as an operating system that has been loaded into 
memory from an external memory device. Its 
functions include  file-handling commands 
considerably more advanced than those 
encountered on other ROM-only computers such 
as the Spectrum. 

The operating system used by a computer, 
then, can be seen as a program with the function 
of sitting between the user and the rest of the 
computer system, including its CPU, systems 
software (such as programming languages) and 
applications software. 

PORTABILITY 
The ability to use software on more than one 
computer system is known as portability. There 
are, broadly, two aspects to this. The first is the 
fact that different processors require different 
instruction sets in order to perform equivalent 
operations. Thus, machine code instructions to, 
say, add together the contents of two memory 
locations would have one form if written for the 
6502 (used in the Apple) and an entirely different 
form if the same operation were required on a 
Z80 computer such as the Spectrum. The 
problem of converting high-level code into 
suitable machine code is, however, the 
responsibility of the interpreter or compiler used. 
Different interpreters and compilers have to be 
written for each different CPU. 

There is, however, a separate problem affecting 
software portability. Even when the same CPU is 
used, as in the Apple and the BBC, there are 
other complications. Different address locations 
are used for the video memory, different codes 
are needed to move the cursor about the screen, 
different input and output facilities are provided, 
and so on. 

To overcome this problem, generic disk 
operating systems were developed that would 
allow all software written for, say, one disk-based 
Z80 computer to run on any other disk-based 
Z80 computer having the same operating system. 
The best known of these disk operating systems is 
CP/M (Control Program/Microcomputers). 

Disk operating systems such as CP/M are 
essentially a development from the more 
machine-specific monitors and _ operating 
systems, but they represent a major advance in 
terms of software portability. Any program 
written to run under a generic operating system 
such as CP/M or MS-DOS will run on any 
computer with that operating system, provided 
the software does not try to make use of any 
special features (such as sound effects) specific to 
one machine. The operating system software 
itself is supplied in standard form by its 
developers to the computer manufacturer. All the 
hardware manufacturer has to do is to rewrite a 
small machine-dependent portion of the 
program. 

Disk operating systems vary considerably in 
their complexity and capabilities, but the simpler 
ones such as CP/M and MS-DOS comprise 

OPERATING SYSTEMS/APPLICATION 4 

essentially three parts: the command processor, 
the basic disk operating system (BDOS) and the 
basic input/output system (BIOS). Of these 
parts, the only one relevant to portability is the 
BIOS. The BIOS is a separate part of the 
program that contains all the routines needed to 
handle the peripherals, including the screen and 
the keyboard, and it has to be specially configured 
for each new computer design. Any program that 
runs under the control of this operating system 
will interface with the computer through the 
BIOS. The BIOS, then, will handle such things as 
getting characters fom the keyboard, outputting 
characters to the screen or printer, addressing the 
disks, and so on. 

The BDOS consists of the parts of the 
operating system that are not device-specific (i.e. 
generalised routines for handling the screen, 
printer, disk drives etc.). These parts of the 
program do not need to change between 
implementations. The BDOS and BIOS together 
correspond roughly to the monitor or operating 
system found in ROM-based computers. 

The command processor is the part of the 
program that handles operating system 
commands typed in from the keyboard. Typical 
commands include those that load files from disk 
into main memory, list the file names present on 
the disk and erase or rename files on the disk. 

Because the operating system is something that 
does its work in the background it is often 
overlooked, yet it is an essential part of any 
computer system. This makes it well worth the 
effort of understanding it. 

THE HOME COMPUTER ADVANCED COURSE 183 

Key To Success 
The Osborne 1 owes much of its 
success to being a CP/M-based 
computer. It comes with some 
of the most popular CP/M 
programs, including WordStar, 
SuperCalc and MBASIC 

IAN McKINNELL 



Saving A Binary File 
A binary file is simply a 
copy ofa portion of 
memory. This could 
consist of a program in 
memory, a screen 
image and so on. The 
filing process is 
straightforward; after an 
entry for the file has 
been made in the 
directory, the data is 
written as a linked 
series of sectors. The 
DOS will also keep a list 
of the sectors used, so 
that they are not 
overwritten when 
another file is created’ 

184 THE HOME COMPUTER ADVANCED COURSE 

MEMORY MANAGERS. 
We have already discussed the advantages 
of disk storage systems over tape systems 
(see page 4) and looked at the disk systems 
used by the more popular home computers. 
The series of articles we begin here 
examines the standard methods of file 
handling used by disk storage systems: 
binary, sequential and random access files. 

File is a very apt word when used in reference to 
computer storage, since direct analogies can be 
drawn with the method of storing documents and 
records in a filing cabinet system. Bearing this in 
mind, we will first discuss why filing systems are 
necessary in home computers. 

In order to efficiently ‘manage’ our day-to-day 
lives, it is necessary to maintain the most accurate 
record of our experiences, monetary transactions, 
social appointments and so on. Most people use a 
diary/address book and keep tabs on a bank 
account by filling out the cheque stubs. This need 
to store information and, more importantly, recall 
it simply and easily is amplified many times when 
dealing with the large amount of constantly 
changing information inherent in any business or 
project involving different people, places, objects 
and circumstances. As such enterprises grow, the 
management of information becomes increasingly 
complex, and most problems experienced by 
ventures of this type can be attributed to 
mismanagement and _  misinterpretation of 
information. A simple and efficient method of 
storing, indexing and retrieving data is the essence 
of good management. Capable administrators 
understand the need for good filing techniques, 
structuring their methods of storage according to 
the type, volume and rate-of-change of the 
information under their control. 

These principles remain the same when applied 
to the fundamental ability of computer systems to 
manipulate and accurately store vast quantities of 
information at an incredibly high speed. At the 
centre of such a system is the computer’s 
‘administrator’ — the disk operating system 
(DOS) — which works perfectly well, provided it 
is given the correct information and asked the 
right questions by the ‘manager’ (i.e. you or your 
program). So, computer storage systems are only 
as efficient as the data structure (or filing system) 
adopted by the DOS, and the way in which the 
DOS is used. 

The standard methods of file handling used by 
microcomputer systems were _ originally 
developed for mainframe and mini computers. 
They can be broken down into three systems: 



Disk 
Directory 
On the screen is a disk 
directory produced by the ec S at Filename CP/M utility STAT, which gives ne: noe, ee 
considerably more il i BrAQCNTLIST.OTA 

information than most r1 i GANT 

spite ca pica 1a j RB: ANT. BAK 
e hice o- ] e ASM oO sol: ae 

The number of records in the Le \ B:CODELIST .DTA 
file can vary; here the records Lé i BrAUToOsST . CoM 

, widbnact rato 8 i i 8B: COMPANY .DTA 
Bytes pi i B: CONTROL .OTAR 

The length of the file in Kbytes 4 | B: COPY .COM 
At j B:2DT. COM 

= extent is an alte nati e # shite tol ATEN IS (Naty esr a e TMT are Se 
measure of the disk space ce Ret a ; IN S TAL I. CI 
occupied by the file ef lt Rew Bs JUNE 

& i Rel Bs: LOAD. COM 
Acc é Rll BsMICROLIB 
Access: a file can be marked for A ee 2 poe i a “ os 
reading and writing (R/W), or 1 RAW BEML. COM 
for reading only (R/O) iS 2/7 BsMOYVCPM. COM 

aI ‘bE oB sR EP CUM 
File Name dal 

3 "| | 
se ° BA 

“Ll Eyl 

an of Fs 
ie at 

B:sCREEN.ASM 
BE: SCREEN. COM 

B+ SCREEN. DOC 

BE: STAT. COM 
S5K 

The full file name starts with a 
drive name (A: or B:), followed 
by the file name (AUTOST, for 
example), followed by the file 
extension (.COM, for example), 

Gemrete Sporto ecmsathe © Jommmnie Seaway © Sree 

3 he 

Keo, 
Dai 

vs 
cs ies 

a, 

Sans 

: 

_ 
a 

hai 

oe Ls it: ii which may give some 
information about the file’s 

contents 

binary, sequential, and random access files. We 
will look at each of these methods separately. 

BINARY FILES 
A binary file is simply a copy of a portion of user 
memory, a good example being a SAVEd program. 
Imagine the area of RAM available to the user as a 
simple notepad. If you were keen to preserve vital 
notes or interesting drawings, you would tear the 
relevant pages off and keep them where they were 
handy. Binary files work in the same way. When a 
SAVE command is given, the DOS stores the 
FILENAME on disk, marking it in some special way 
as a binary file and then copies the relevant area of 
memory byte-by-byte to the disk. The program is 
stored in linked blocks (with the markers at the 
end of each block indicating where the next block 
begins) until the end of the program or data is 
reached. The last block finishes with an end-of-file 
marker. Using our analogy we could say that we 
have named and stored a page from our notepad 
in a filing cabinet drawer, and added the name of 
the file to the contents list on the drawer. 

On being RETURNed or ENTERed, a BAsic 
program line is compressed into a tokenised form 
in which the BAsic keywords are coded by the 
BASIC interpreter into one-byte numbers. These 

Remaining On B: 

can be manipulated more easily and decoded back 
into text for LISTing purposes. As a binary file is a 
RAM image it can also store ASCII codes and 
binary data. The facility to save ASCII files is 
useful for storing the contents of screen memory, 
for example, so that screen displays can be SAVEd 
and later LOADed back into the same area of 
memory easily. In addition, some disk operating 
systems and Basics allow a BAsIC program to be 
stored in ASCII form. This enables the 
untokenised program to be edited as a text file in 
machines with sophisticated editor programs. 

Binary files are very simple to use and manage, 
but they are limited by two factors. First of all, it is 
only possible to SAVE the relevant information as 
one continuous section of data. As a consequence, 
the information must be retrieved in the same 
manner and therefore binary files must be LOADed 
back into memory in their entirety. Secondly, the 
maximum size of a file is limited by the amount of 
RAM available to the user. 

In the next instalment of the course we will look 
at sequential files, which allow a file to be as long as 
is required (within the limits of disk space), and 
random access files, which use different methods 
to allow the DOS to store data in such a way that it 
can be freely retrieved and updated. 

THE HOME COMPUTER ADVANCED COURSE 185 



PGB Truth Table 

We are now at a stage in the Logic course 
where we can design quite complex 
computer circuits. In this instalment, we will 
follow through the whole design process — 
from initial specification, through truth 
table and simplified Boolean expression, to 
finished circuit diagram — for a parity bit 
generating circuit and a priority encoder. 

Before beginning to look at the design of these two 
advanced applications, we will first take a detailed 
look at another important logic gate — the 
Exclusive OR (XOR) gate. This gate has already 
been briefly considered (see page 47), but we have 
not yet given the Boolean algebra or circuit 
diagram symbols for it: 

TthTale |Get Smt 

From the truth table, it can be seen that the output 
C can be expressed in two ways: 

a) C=A®B=AB+AB 
b)C=A®B=AB+AB 

The second expression is formed by considering 
the cases when C is not one (i.e. zero). This gate 
will be of particular use in our first application. 

A PARITY BIT GENERATOR 

Parity 
Bit 

P 

Five-bit Code 
With Even Parity P 

Parity is an important concept in the design of data 
transmission systems. The parity bit (see previous 
diagram) of a binary code is added to the rest of 
the code in order to make all the codes transmitted 
have an even number of ones. (Another 

186 THE HOME COMPUTER ADVANCED COURSE 

ON THE LEVEL 
convention is to make all the codes contain an odd 
number of ones — this is known as odd parity). A 
parity bit acts as a checking system to ensure that 
the correct transmission has taken place. The 
circuit we shall design will accept a four-bit code 
and produce an appropriate parity bit. With a 
small modification the circuit may also act as a 
parity checker of incoming data. The truth table 
for this circuit is given in the margin. Representing 
these values on a k-map gives: 

The symmetrical pattern produced on the k-map, 
unfortunately, does not allow simplification 
because no groups can be formed. The resulting 
expression for P is: 

P=A.B.C.D+AB.CD+A.B.CD+AB.C.D 
+A.B.C.D+A.B.C.D.+A.B.C.D+A.B.C.D 

By grouping the red terms together and the blue 
terms together, we can simplify the expression: 

P=(A.B+A.B).(C.D + C.D) 
+ (A.B + A.B).(C.D + C.D) 

Now, by referring to the expressions for an XOR 
gate that we introduced at the start of this article, 
we can further simplify the expression to get: 

P=(A@B).(C®D)+(A®B).(C®D) 
By considering each bracketed term as an input to 
an XOR gate, the expression may be further 
reduced: 

P=(A®B)@(C@D) 
and the circuit formed is a ‘cascade’ of XOR gates: 

y 



This circuit can be modified to act as a parity 
checker by simply adding another XOR gate to 
compare the received parity bit with one 
generated by the circuit at the receiving end. 
Five-bit Received Code 

In practice, most computers use the international 
standard ASCII code for data transmission. This is 
an eight-bit code with seven information bits and 
one even parity bit. It is easy to envisage a parity bit 
generator for ASCII codes: 
Seven-bit Information Code 

APRIORITY ENCODER 
Many computers use ‘priority interrupt’ systems 
to control the flow of data to and from peripheral 
devices. In these systems the CPU’s operation is 
interrupted by a signal from the peripheral when it 
needs the CPU’s attention. Where two or more 
peripherals interrupt the CPU at the same time, 
however, an order of priority must be followed for 
the CPU to ‘service’ the most important device 
first. The priority encoder that we shall design will 
link four peripheral devices into a circuit that can 
identify which peripheral is signalling, and will 
Operate a priority system in the case of 
simultaneous signals from two or more devices. 

In order to output information specifying one 
of four devices, two output lines are required. In 
addition, a third output line will be used to signal 
that an interrupt is required. Let the four 
peripherals be P, Q, R and S; P having the highest 
priority and S having least. The output lines will be 
called A and B, to identify the peripheral, and Z to 
signal that an interrupt is required. The truth table 
for the encoder can be made using an X for 
conditions that the encoder ‘doesn’t care’ about 

To help you to understand how this table is made 
up, look at the final row. In this case P is signalling 
an interrupt and as P is the device with highest 
priority we do not care whether or not the lower 
priority devices are signalling as well. 

The three output lines from the circuit must be 
analysed independently. Starting with A, the k- 
map is: 
For A 

A=P+Q 

The ‘don’t care’ case on the output side for A is 
represented on the k-map as an X, but the ‘don’t 
care’ cases on the input side are dealt with 
differently. Take the case where P is one and Q, R 
and § are ‘don’t cares’. Here we must fill in all the 
boxes on the k-map where P is one — there are 
eight in all. From the k-map we get the simplified 
expression: 

A=P+Q 

Similarly for B and Z, the k-maps are: 

FOR B P P FOR Z 

B=P+RQ 5 —— S Z=P+Q+R+S S LJ 5 
| | Ss 

Using these three expressions, we arrive at this 
circuit design: 

THE HOME COMPUTER ADVANCED COURSE 187 



ER ee 

BIT 
This word is supposed to have originated as a 
contraction of the term Binary digIT, though 
there is some suggestion that it may simply have 
derived from the American slang for a small sum 
of money, more familiar in phrases such as ‘two 
bits’. It forms the root of a great many phrases in a 
contemporary jargon dictionary, and here are just 
a few of them: 
Bit-copier: A utility program that can copy one 
disk to another, bit-for-bit. These programs have 
been used in pirating software, since they can 
usually overcome any in-built software protection 
methods. 
Bit-error: A fault arising in a computer system 
when one or more bits in RAM memory or on 
magnetic disk flip from one logic state to another. 
These may be soft errors — caused by strong 
electrical interference or even cosmic radiation 
during periods of sunspot activity — in which case 
they should not recur when the computer is reset. 
Alternatively, they may be hard errors — for 
example, when a transistor in a RAM chip breaks 
down — in which case the whole unit will need 
replacing. 
Bit-mapped: This refers to a microcomputer 
system where every dot or pixel on the display 
can be individually and independently switched 
on or off. Every pixel is represented by a bit in 
RAM memory. 
Bit-twiddling (more correctly bit-manipulation): 
This is a term used among programmers for 
programming the computer at its lowest level. 

BLOCK 
A block is a fixed amount of data, usually a 
quantity of information stored on disk or cassette 
tape. It is usually the smallest amount of data that 
can be read from or written to disk at any one 
time. A system might, for example, have to write 
four complete 256-byte sectors at once whenever 
it writes to the disk. A block here would be four 
sectors — or one Kbyte — of data. Each block is a 
self-contained unit and often has extra error- 
checking information included in it so that the 
micro can detect errors as it loads the block. 

BOOT 
A program cannot load itself from disk into 
RAM: that is a function of the operating system. 
On home computers, the operating system is 
usually in ROM, and therefore available when the 
computer is switched on. But on_ business 
systems, the operating system is itself a program 
that resides in RAM. So how is it loaded when the 
machine is first switched on? 

The answer is that a machine must contain a 
tiny program in ROM called a bootstrap loader, 
which is activated whenever the computer is 
switched on or reset. The bootstrap finds the 
operating system on disk, transfers it byte-by-byte 
into a fixed area of RAM and then hands over 
control to the new program. The whole process is 
known as booting up, or just booting. 

188 THE HOME COMPUTER ADVANCED COURSE 

BRANCH | 
A branch instruction is one that directs the 
computer to stop executing the instructions in a 
program in the normal sequence and go to 
another part of the program. There are two types 
of branch. An unconditional branch can be — 
regarded as a compulsory instruction that must be 
undertaken. The GOTO command in Basic is a 
good example: it instructs the interpreter to go to 

_ the specified line number and continue from that 
point. The alternative is a conditional branch, 
which is only taken if a certain condition is true. 
For example, in Basic, the command IF SUM>4 
THEN GOTO 100 will branch to line 100 only if the 
value of SUM is larger than four. Quite often, 
people distinguish between these two by using the 
word jump for an unconditional branch and 
branch for a conditional branch. 

BREADBOARD 
This is the name given to a device onto which 
electronic components can be mounted for the 
purposes of experimentation and _ circuit 
development. Breadboards come in two main 
forms. The first of these is really a kind of general- 
purpose printed circuit board — a stiff piece of 
card drilled with an array of holes and printed on 
one side with parallel copper tracks. Integrated 
circuits and discrete components can be soldered 
onto the board, then the tracks may be severed 
with a sharp knife, or joined using a piece of wire 
as a bridge, to form the correct interconnecting 
circuit between components. The result is often 
quite untidy, but it is a good deal quicker and 
cheaper than designing and etching a printed 
circuit board for each experimental phase of a 
product. 

The main alternative to this type is the 
solderless breadboard, which is intended for 
home experimentation rather than professional 
use. It is typically made from plastic and is around 
1cm thick. The connecting wires run inside the 
casing, and electronic components can be pushed 
into the small holes in the top surface and pulled 
out again when the circuit is to be changed. ~ 

t 



ATARI 600XL & 800XL/HARDWARE 4 > 
Po AN 

ATARI UPDATE 

Atari entered the home computer market 
very early with two models, the 400 and the 
800. These computers were characterised 
by a high standard of construction, superb 
graphics and excellent sound. Now Atari 
has updated both models. The two new XL 
models sell at a cheaper price and include 
some welcome refinements. 

Faced with the growing competition among home 
computer manufacturers, Atari redesigned its line 
of computers and introduced the 600XL and 
800XL. The new machines can use the software 
written for the 400 and 800, which opens up a 
wide range of programs, from top-selling games to 
business packages. 

Fortunately, both machines have adopted the 
keyboard of the 800. The Atari 400 has a 
membrane-style keyboard, similar to the ZX81, 
with its characters printed on a flat plastic 
membrane. Because of the small size of the keys 
and the amount of pressure needed to make 
contact, touch-typing is virtually impossible. In 
contrast, the 800 has a full-size typewriter-style 
keyboard that is one of the best on the market. 

The keyboards of the new machines are 
identical and have a total of 62 keys. These include 
four function keys: START, SELECT, OPTION and 
RESET, which are positioned on the right-hand 
side of the keyboard. There is also a HELP key, 
which works with some new software to provide 
helpful hints on the screen. There are 29 graphics: 
keys and the Ataris have a full ASCII character set 
built in. One quirky feature of the keyboard that 
has been inherited from the 800 is the way the 
cursor keys are used. The arrows are printed as the 
third character on four separate keys. To move the 
cursor you hold down the CONTROL key while 
pressing the appropriate arrow key. Apart from 
this strange feature, the keyboards are well- 
designed and comfortable to type on. 

The Atari 400 comes with 16 Kbytes of user 
memory, while the 800 has 48 Kbytes. Both 
computers have expansion slots on the system 
board that can be accessed by removing the top of 
the machine. The XL models should not be 
opened. Instead, expansion ports are built into the 
outside of the case. The only significant difference 
between them is the amount of memory that 
comes as standard. The 600XL comes with 16 
Kbytes, which can be expanded to 64 Kbytes by 
plugging in an expansion pack. The 800XL comes 
with 64 Kbytes. 

Both of the XL machines have an interface built 
in called the ‘Expander’. This is a bus-type 

| eee beeee 

soccer 

WUUUUCEUUUUOCUUEEUCTUIIcerrceccrrreceercrrre ATARI 800 XL 

; | BERD DDO 
RR ple Naini atibe C5 

. a. 

i Ne Rk 

expansion port that can be connected to a variety 

of peripherals and expansion packs. There is alsoa 

ROM cartridge slot just behind the keyboard for 

cartridge games and other software. The original 

Atari 800 has two cartridge slots, but virtually no 
software has been written to make use of the 
second slot, so it has been removed from the XL 

line. The 400 and 800 have four joystick ports, but 

again there is little software that uses all of these, so 

they have been reduced to two on the XL 

machines, and these ports have been moved from 
the front of the case to the side. 

SOUND AND LIGHT 
All the Atari computers can be connected directly 
to a television set, and all but the 400 can connect 

to a computer monitor as well, but the Atari 

screen display is good, even on a television. The 

character set is generally easy to read and the 

contrast between text and background is quite 

good. There are a number of colour options 

available, but the normal text display comprises 
white lettering on a deep blue background. The 

Atari computers display a maximum of 40 

columns by 24 lines of text. There are four text 
modes with different displays. 

The Ataris were among the first computers to 
provide sprite graphics. Their sprite function is 

called Player-Missile graphics, and is controlled 

r 3 bhi 

The Atari Twins 
Atari’s 600XL and 800XL home 
computers are very similar, but 
the 600XL has 16K of memory 
while the 800XL has 64K. The 
machines have a high quality 
keyboard and good colour 
graphics. Because they are 
updated versions of the original 
Atari computers, they also 
enjoy a wide range of software 

Disk Drive 
A useful option for the 800XL is 
the disk drive. This gives 127K 
of fast storage. The standard 
600XL does not have sufficient 
memory to use the disk drive 
but can be expanded. A 
number of excellent games and 
business programs are 
available only on the disk format 

THE HOME COMPUTER ADVANCED COURSE 189 

[AN McKINNELL 



by a special chip in the computer called the GTIA 
chip. ‘Players’ are objects created from pixels. 
Once the shape of a player has been determined, 
the values of each pixel are POKEd into an area of 
memory called a ‘shape table’. You can create as 
many as four players, each with an associated 
missile component. The player is assigned one or 
more colours, and is manipulated on the screen by 
changing the values in the shape table. Though 
Atari’s Player-Missile graphics are not easy to use, 
they provide some remarkable screen displays. 

The new Atari machines have 11 graphics 
modes, and up to 256 colours (actually 16 colours, 
each with 16 different shades); because of the 
amount of memory required for screen display, 
however, the number of colours that can be shown 
varies according to the resolution of the screen. 
The higher the resolution, the fewer the colours 
that can be displayed. The maximum graphics 
resolution on the 600XL and 800XL is 320 by 
192 pixels. 3 

Atari’s sound features are also controlled by a 
specially designed chip. There are four 
independent voices, each of which has a range of 
33 octaves. The voices can be controlled through 
the SOUND command in Basic, or by POKEing 
values into.the memory registers that produce the 
various tones. Tones can be adjusted for 
oscillation, pitch, distortion and volume. When 
the voices are controlled with SOUND, only one 
voice can be started at a time. This means that 
harmonising requires you to turn on each voice 
separately, and there is a noticeable delay. This 
problem can be overcome by using machine code 
routines, or using POKE in place of SOUND. 

The Atari 400 and 800 have no language built 
in; you have to use a separate cartridge. The 
600XL and 800XL have Atari Basic built in. This 
is not the best Basic, lacking in many of the 
features that make BBC asic and others so good. 
For instance, there is no CIRCLE command, no 
PRINT@ or PRINT USING feature, no automatic line 
numbering or renumbering, and no provision for 
integer variables. However, Microsoft Basic and 
Extended BAsic are available in ROM cartridge. 

190 THE HOME COMPUTER ADVANCED COURSE 

Port 
The XL range has a single slot 
for ROM cartridges 

Graphics Chips 
Two custom-built chips, known 
as ANTIC and GTIA, provide the 
Atari’s spectacular display 
abilities 

RAM 
A number of chips comprise 
the 16K of RAM 

To accompany the new line of computers, Atari 
has redesigned the existing peripherals and added 
to the number of options available for expansion. 
Perhaps the most useful peripheral is an 
expansion box, which plugs into the Expander. 
The expansion box provides eight expansion slots, 
which can hold interface cards for several 
peripherals, two RS232 serial ports and a parallel 
bus. Atari also has a CP/M module with a Z80 
microprocessor, the CP/M 2.2 operating system, 
and switchable 40/80 column display. 

Atari have scored high marks with the 600XL 
and 800XL in design, quality of construction, and 
features. They also have the advantage of a huge 
library of software on cartridge, cassette, and disk 
that has grown up over the last few years. These 
two new machines from Atari should prove a very 
attractive buy for home computer enthusiasts. 



Sound Chip 

| A custom-built chip called 
POKEY handles sound 
generation 

/0 Chip 
A 6520 handles the input and 
output ports 

CPU 
The Atari is based on a fast 

6502 chip 

ROM 
Two ROM chips hold the BASIC 
interpreter 

Peripheral Port 
A 13-pin port is used to connect 
the peripherals, including disk 
drives, printers, and the 
dedicated cassette recorder 

Joystick Ports 

Atari Cassette Recorder 
The Atari only works with its own cassette recorder. Although 
this raises the price of the system, it does have advantages. 
Firstly, because the recorder is made by Atari it is more reliable. 
Secondly, the recorder uses two tracks. One track is for saving 
programs in the normal way, the other can have sound recorded 
on it. This allows language teaching programs to pay 
fragments of speech at just the right moment 

THE HOME COMPUTER ADVANCED COURSE 191 

ATARI 600XL/ 
800XL 
PRICE 

600XL:£160 
800XL:£250 

DIMENSIONS 

600XL:380x170x40mm 
800XL:380x220x40mm 

CPU 

6502, 2MHz 

MEMORY 
16-64 Kbytes RAM, 24K ROM 

SCREEN 

Up to 24 rows of 40 columns of 
text, graphics up to 320x192 with 
sprites and 16 colours in 16 
brightness levels 

INTERFACES 

Joysticks (2), peripheral port, 
expander port, cartridge port 

LANGUAGES AVAILABLE 

BASIC, FORTH, LOGO, PILOT, 
6502 Assembly language 

KEYBOARD 

Typewriter-style with 62 keys, 
including cursor keys and 
dedicated function keys such as 
SELECT and START for program 
control 

DOCUMENTATION 
Manuals have never been one of 
Atari’s strong points as the — 
company has tended to view its 
computers primarily as games 
machines and has skimped on 
technical details. However, there is 
a vast range of superb 
independent manuals and 
magazines, although these do add 
to the cost of owning an Atari 

STRENGTHS 
The Ataris continue to offer the 
best in games computers with 
superb sound and graphics, and a 
vast range of software to choose 
from. The new machines also 
provide excellent expansion 
options 

“WEAKNESSES 
Ataris can be expensive - you 
need a dedicated cassette recorder — 
and the price of software is 
unusually high. Graphics and 
sound programming are also 
more difficult than with many 
machines 

tn 



Stock Answers 
The Stock Recording System is 
one of the many Dragon 64 
applications programs written 
to run under OS9. This is a 
multi-programming and multi- 
tasking operating system 
developed by Dragon from the 
UNIX operating system 

. 
estes ots 

In the last instalment of our business series 
we looked at how certain packages handle 
stock control. An efficient program needs to 
monitor all stock movement, from supplier 
to the shop shelves. The packages achieve 
this by a system of coding structures. We 
now look more closely at the design 
‘equirements of these structures. 

We have discussed in some detail the different 
ways stock lines can be identified in the stock data 
file. In addition to simply allocating them a code 
number, however, the system should allow the 
user to record information on each stock line. 

This information will need to be categorised 
into relatively constant data and the amount of 
data will be determined by the storage capacity of 
your computer. The design of such a system will 
therefore have to be very economical. The 
amount of information must be sufficient to meet 
basic management needs, but too much 
information will make impossible demands on the 
computer’s processing and storage power. 

IAN McKINNELL 

192 THE HOME COMPUTER ADVANCED COURSE 

LINES OF ENQUIRY 

Dragon Data’s Stock Recording System for the 
Dragon 64 has seven fields in which to record 
information for each stock record. These consist of 
an item number, description, re-order level, cost 
price, sale price, and the unit of measure. 

The fields form an important structure in a 
stock system. The difference between the cost 
price and sale price will provide a measure of gross 
profit. Items can also be grouped, which helps 
both to analyse and summarise in reports. The unit 
of measure field is essential because commodities 
are packaged in varying ways. On one stock line 
the owner will want to count each individual item, 
on others, such as nails and screws, the count will 
be by the box. 

Perhaps the most fascinating aspect of 
designing a stock control system is that much of the 
information required consists of dynamic rather 
than static data. We have already seen that 
standard ledger records consist of relatively 
constant information about the customer or 
account (known as the header part of the record) 
and information about the various transactions 
taking place on that account. 

With stock control, however, the firm 
boundaries that exist between the static part of the 
record and the dynamic or transaction-based part 
of the record become much less clearly defined. 
The stock item and group descriptions and coding 
are the equivalent of the static information on the 
customer or supplier records in sales or purchase 
ledger systems. But with a stock control package, 
static data has to be supplemented by a great deal 
of information derived from stock transactions. 

For example, customers on a sales ledger 
master file change their address or telephone 
number relatively infrequently. Therefore, the 
program will have a master file maintenance 
option that will allow you to amend particular 
client records.The information or amendment 
cannot be calculated by the program. 

If we take the sales price and cost price fields on 
the stock item record as an example, these can 
change each time the business replenishes its 
stock. The logical solution here is for the program 
to take this information (together with the date of 
the price change and the stock volumes affected) 
directly from a transaction input routine recording 
goods received, and not from a file maintenance 
program. There will still be, of course, a need for a 
file maintenance program to amend _ stock 
descriptions, or add or delete a stock line from the 
stock file, but a lot of data can be generated from 
basic transaction information. 

In order to understand how a stock control 
program operates, we need to look at the input 



7 MODLLE 

SESEEEEEEEERESHEREHRHHEHREEE 

7) RETURNS TO SUPPLIERS 
3) =CPAPPED 

20) PURCHASES 

21: RETUPNED PEQUISITIOQNS 

22) PETUPNED SALES 

39) ADJUSTMENTS 

a0 AUDIT CHECK 

EHH EERE SFA ASF RII 

* FILE ENQUIRIES MODULE * 

KHER AISI 

ENQUIRY OPTION : 3) STOCK ITEM ENQUIRY 

: 00000001 

DESCRIPTION 

PRODUCT GP. :RECORD DECKS PERIOD 

7% 75.00 

$105.00 

COST PRICE 

SALE PRICE 

+ ISSUE 

UNIT MEASURE 

REORDER LEVEL H 

AVERAGE USAGE : 

STOCK IN HAND : 23 

fees men me me 

routines and the enquiry facilities and reports that 
these lead to. We have taken the Dragon’s program 
as an example and have illustrated the various files 
in our diagram. The three important elements are: 
the transaction input routines, the transaction 
details and the stock item enquiry file. 

The transaction input displays all have the same 
layout in the Dragon system. The transaction 
types are more or less self explanatory. We will 
concentrate for the moment on sales (i.e. on 
movements out of the stock register). But first it is 
worth noting that all business programs are 
designed to be as ‘friendly’ as possible, and will 
prompt the user to enter all the necessary 
information. This leads to two different 
programming requirements that have to be met if 
the system is to be successful. — 

On the one hand the program has to recognise — 
certain data fields and perform arithmetical or 
other operations on the data. On the other hand 
the program has to guide the user and recognise 
inappropriately entered data. In other words, it 
has to perform checks on the data entered. 

Once the user has entered the data, the 
reference number to identify the authority for the 
entries (the same number would be marked on the 
sales invoices from which these entries would be 
generated), and the item number, the computer 
will read the stock file to see if such an item exists. 

SBANSUI GRE2P 5 <<—=-5-""--- See 

-ITRTEGRATED 72°" s%207°*"ee" 

TRANSACTION OPTION: 1) SALES 

DATE 2 2 * fOr 7 oR 

REFEPENCE :° 2253 

KEKE HKEKRKEKEEEE EER EEK ERER 

ACTION (<I>=ITEM; <SP>=NEXT ITEM; <RET>=EXIT?: I 
KEEEEKREKEEKEEERERKEREEEEERERS 

If it finds the number, it will automatically display 
the description allocated to that item number. This 
acts as a visual check for the user, who can then 
enter the quantity sold. 

From this information, the computer is able to 
extract a large number of enquiries and reports. 
For example, one of the options on the main 
menu, FILE ENQUIRIES, has a sub-menu consisting 
of seven options covering stock items, transactions 
and product groups. These are: STOCK DETAILS, 
SLOW MOVING ITEMS, RE-ORDER _ DETAILS, 
TRANSACTIONS (BY STOCK ITEMS), TRANSACTIONS 
(BY TRANSACTION TYPE), PRODUCT GROUP DETAILS 
and STOCKHOLDING. 

The sales transactions affect all these reports. If 
a re-order report is requested, for example, the 
program will check to see if the stock sold on these 
two items has taken the quantity of stock in hand 
below the specified re-order level. 

Every detail entered on the sales transaction 
display is relevant and is used in some way. The 
Dragon program enquiry display provides a clear 
illustration of how much’ management 
information. can be derived from those sales 
transactions. The usage history gives an 
immediate indication of the speed and volume of 
commodities moved over the year, the average 
usage period consolidates this, and the last issue 
date and reference are also displayed. 

acces dl 

HEKEREHEEEEEEEEERE EEE 

*# TRANSACTION REPORT * 

HE KHEKEHEEREEERENEREER 

Authorised Entry 
The stock control program 
accepts transaction 
information, and checks the 
user’s authority to enter 
information and that the 
transactions are valid. The 
stock file, which contains the 
individual stock item records, is 
on line during this process, and 
is updated by it. The program 
also contains a database 
module, allowing the user to 
inspect the stock control file 
and create reports on various 
aspects of the inventory 

THE HOME COMPUTER ADVANCED COURSE 193 

COLLINS/DUNCAN SMITH 



TESTING TIME 

In the previous instalments of Workshop, we 
investigated many of the ideas and 
techniques used in the construction of 
computers and their peripherals. Before 
proceeding to undertake more complex 
projects for your home computer, we now 
pause for a brief overview of the work 
covered so far. 

We started the course by suggesting that the right 
tools for the job are essential (see page 44). A 
range of equipment is desirable for the specific 
tasks involved in construction, alteration and 
repair work. You can use a flat head screwdriver 
on a cross head screw, but that is likely to lead to 
damage to both of them. You can use a pair of 
pliers to undo a nut, but a spanner will do the job 
quicker and without ruining the nut. In the long 
run, it pays to invest in a set of tools specifically 
designed for these jobs. 

Attaching and joining wires is the same. A good 
solder joint will last longer and operate better than 
one that has been hastily connected. Always apply 
the solder to the wire, not to the iron, as the solder 
will slowly corrode away the tip of your iron. The 
less contact the two have, the better. Let the solder 
flow over the two wires you want to join, and only 
when the whole joint is covered, remove the heat 
and cool the joint by blowing on it gently. Keeping 
to these rules will ensure the joint is not dry. 
Desoldering allows you to remove components 
from circuit boards safely for repair or 
replacement (see page 68). 
We have discussed the fundamental concepts of 

digital electronics, both in Workshop and in the 
Computer Science course. We have introduced 
the basic components and seen how these interact. 
The resistor is the simplest of all the components, 
but also the most frequently used. If you look 
inside your microcomputer, you will see more 
resistors than integrated circuits. 

The capacitor is also very common. In 
computers, these are used to filter off the 
unwanted noise that attaches itself to a signal. 
Every time that a signal is changed, amplified, or 
otherwise used, it is degraded. So a means of 
restoring the signal to its uncorrupted form is 
essential. The capacitor is the simplest way of 
removing the unwanted elements of a signal. 

The most important component that we've 
discussed, however, is the transistor. This is the 
essential component of all the devices that are 
used to change and manipulate the signals in a 
computer. The transistor can be used to amplify a 
signal, or to switch signals on and off. Most 

194 THE HOME COMPUTER ADVANCED COURSE 

importantly for the computer, the transistor can 
Switch a signal on and off in accordance with one 
or several other signals. This is what goes on inside 
a logic gate. 
We have built the three simplest logic gates, 

NOT, OR and AND, from a handful of 
components (although individual gates within the 
computer’s integrated circuits are often made up 
of other, more complex types of transistors). 

Logic gates are not particularly useful in 
themselves, but they can be combined into logic 
circuits that can perform operations on data. In the 
last instalment, we constructed a half adder — a 
simple logic circuit to add two binary bits — from 
the logic gates on two integrated circuits. 

Integrated circuits are some of the most 
complex components used in electronics. The 
simple transistor-transistor logic (TTL) chips that 
you have used so far are small scale integration 
(SSI) packages. There are only a few transistors in 
each chip. These were the first type of chip made, 
and early computers relied upon them. As 
techniques improved, however, so the number of 
transistors that could be fitted onto a single chip 
increased. Medium scale integration (MSI) 
allowed complete logic circuits to be available on a 
single chip. An example of these is a full adder — 
equivalent to two of the half adders we built (see 
page 165) combined. 

Large scale integration (LSI) and very large 
scale integration (VSLI) have also been 
developed. A complete CPU on a single chip is an 
example of VLSI. As there are literally thousands 
of transistors inside a microprocessor, it is difficult 
to imagine the logic circuit of such a chip, but this 
complexity makes individual chips very powerful 
and easy to design into circuits. 

Having mastered these fundamentals, we can - 
proceed to tackle more complex ideas, and this 
should enable you to construct some useful 
additions to your micro. First, though, try your 
hand at the projects opposite. None of them is very 
complex, and none requires more than a couple of 
transistors or integrated circuits. 



2) NOR Gate 
On page 145, we constructed NOT, OR and AND 
gates using transistors. This first practical exercise 
is to build a NOR gate using a similar circuit to those 
for NOT, OR and AND. As a helpful hint, the circuits 
for OR and NOT appear below. There are two 
approaches to this problem. You could use your 
knowledge of logic circuits to construct a NOR gate 
by combining an OR and a NOT gate. Alternatively, 
you may spot a short-cut method if you study the 
NOT gate circuit closely. 

j | gate 

& CS 

4) BCD Or Not BCD? 
fete studied the binary-coded decimal (BCD) 
mbering system in the Computer Science course. 
S is anumbering system halfway between 

mal and binary — each decimal digitis 
erted to its binary equivalent and the resulting 

For example, 53 is coded as 01010011, oi is 
ented by 0101 and three is represented by — 
This means that any valid BCD digit is a group 
om 0000 to 1001 corresponding to zero to” 

ni decimal. Any codes in the range 1010 to 
11 are illegal in BCD. 
: rcuit to test whether a given four-bit — 

0, B1, B2 and B3, representing the — 
ested. There should be two putts. 

—~sOoOo-s00400+-—4 sols - anata et tt OoOooeaoscoeooo =m=O-n 047 082 00 #0 #00] cCoeoeoe eos es ae ae at ae a | see et OOOO ss OCS] 

ie mie 

_is given by B3+B2.B1. The invalid BCD signal is the 
huey of Mis: 

- which can be simplified as: 

‘THE HOME COMPUTER ADVANCED COURSE 195 

r-bit groups are joined together to make the BCD ~ 

gal digit. Your circuit should have four 

the number is a legal BCD digit and a 
ah wise. e Thee truth coh oT) hes this: . 

is truth ta table, we can see that the BCD stent 

_ ao 



(ure 
\ [ \ LY 
iN (T i \\ \ [ 

MODES OF ADDRESS 
The strength and versatility of Assembly 
language instructions is enhanced by the 
variety of ways in which these instructions 
can address memory. The different ways 
consist of direct, indirect and indexed 
addressing, and combinations of these. In 
this instalment we take a closer look at 
modes of addressing in machine code. 

Every Assembly language instruction refers 
explicitly or implicitly to the contents of memory, 
and since one byte is distinguishable from another 
only by its address, every Assembly language 
instruction must, therefore, refer to at least one 
address. The manner in which an address is 
referred to may be direct and obvious, as in LDA 
SE349, which means ‘load the accumulator with 
the contents of the address $E349’. In this case, 
both the accumulator (a byte with a name rather 
than a number for its address) and the address 
SE349 are mentioned unambiguously, and the 
nature of the relationship between them is clear. 

On the other hand, the reference to an address 
may be much less obvious: RET, meaning ‘return 
from a subroutine call’, is a good example. This 
may not seem to refer to an address at all until you 
expand it into ‘the location address of the next 
instruction to be executed is the place where the 
last subroutine call was made’. Here, the address 
whose contents are to be changed (ie. the 
program counter — the register holding the 
address of the next instruction to be executed) is 
not mentioned, nor is the address at which its new 
contents (i.e. the new location address) are to be 
found. These two instructions can be seen as 
highly contrasting examples of addressing modes. 

In the course so far we have seen instructions in 
two kinds of addressing mode: immediate mode, 
as in LD A,$45 or ADC #$31, and absolute direct 
mode, as in STA $58A7 or LD (S696C),A. These may 
seem like the ‘natural’ addressing modes, 
covering every possible case except the implicit 
modes such as RTS or RET, but there are other 
possibilities as well. We shall look at these 
separately. 

ZERO PAGE ADDRESSING 
Zero page addressing (also known as _ short 
addressing) is used whenever an instruction refers 
to an address in the range $0000 to SOOFF. All 
addresses in this range have a hi-byte of $00, and 
therefore lie on page zero of memory. Such > 
instructions need only two bytes — one byte for 
the op-code and one for the lo-byte of the 
address. When the CPU detects a single-byte 

196 THE HOME COMPUTER ADVANCED COURSE 

address at a point where it expects there to be two 
bytes, it assumes a hi-byte of $00, and so refers 
automatically to page zero. The advantage of this 
page zero mode is speed of execution: data on 
page zero is accessed significantly faster than data 
on any other page precisely because it requires 
only a single-byte address. 

The Z80 and the 6502 microprocessors differ 
greatly in their use of the zero page mode. In 
6502 Assembly language, any instruction that 
addresses RAM (such as LDA) can be used in the 
zero page mode, and all the 256 bytes of zero 
page are available to the CPU. In Z80 Assembly 
language, only one instruction — RST (the ‘restart’ 
or ‘reset’ instruction) — features the zero page 
mode, and it can address only eight specific page 
zero locations. Because the RST instruction is so 
specific in its addressing, it requires only a single- 
byte op-code (the address forming part of the op- 
code itself), which makes it very fast in execution. 
We will see more of the Z80 RST instruction later 
in the course because of the special uses to which 
it is put. 

It may seem ridiculous to be comparing the 
speed of Assembly language instructions when 
the execution time of the slowest instruction is 
measured in microseconds anyway, but it isn’t 
difficult to write Assembly language programs in 
which saving a microsecond per instruction 
execution can mean the difference between 
success and failure. Games programs featuring 
animated high-resolution three-dimensional 
colour graphics, for example, can involve millions 
of instructions per screen operation, and they 
must execute these commands as quickly as 
possible for the sake of smooth animation. 
Shaving a microsecond off one operation 
becomes very important when you put that 
operation inside a loop and execute it 64,000 
times consecutively. 

INDEXED ADDRESSING 
Indexed mode is vital to Assembly language 
programming since it permits the construction of 
array-type data structures. Without such 
structures, programs are restricted to addressing 
memory locations individually by address: this is 
what we have done with all the programs so far in 
the course. Once indexing is possible, however, 
far more data can be handled, and more power is 
put at the programmer’s disposal. 

The essential elements of indexed mode are a 
base address and an index. Suppose we wish to 
keep a table of data — ASCII character codes, for 
example — in consecutive bytes. The base 
address of the table is the address of its first byte. 



ASSEMBLY LANGUAGE 
VERSION 

BADDR = base address 

of AS() 

Load index register 
with zero 

Begin 
loop 

Load accumulator from BADDR 
modified by index register 

Add $20 to accumulator 

Store accumulator at BADDR 
modified by index register 

Index register = 
index register + 1 

Is 

index register 

= S0A ? 

Given this, we can refer to every subsequent byte 
in the table by its position relative to the base 
address, so that the first byte is in position zero, 
the second byte is in position one, the third in 
position two, and so on. A byte’s position relative 
to the table base address is called its index, and 
the absolute address of any byte in the table is 
calculated from the sum of the base address and 
the byte index. If we can construct a program 
loop in Assembly language, and use the loop 
counter as an index to the base address of the 
table, then we can address each byte of the table 
in sequence, just as we might access the elements 
of a BASIC array using a FOR..NEXT loop. 

Once again, the Z80 and 6502 Assembly 
languages handle indexed addressing differently. 
The 6502 chip contains two single-byte registers 
called X and Y, each of which can hold an index 
that modifies a base address. This limits the length 
of a table to 256 bytes (the largest possible single- 
byte number). The Z80 chip contains two two- 
byte registers, IX and TY, which may hold the 
base address itself, and can then be incremented 
or decremented to point to successive bytes of the 
table. Since they are two-byte registers, LX and IY 
can address any byte addressable by the CPU 
itself. Their contents can also be modified by a 
single-byte index. 

INDIRECT ADDRESSING 
Indirect addressing involves the use of pointer 
addresses, a concept which was introduced early 
in the course, in relation to floating boundaries in 

PART 10/MACHINE CODE < 

indexed 
Addressing 
Suppose that we have a 
BASIC string array, AS, 
whose 10 elements are single 
upper-case characters that we 
wish to change to lower-case. 
In most machines they will be 
stored as a table of 10 
consecutive bytes in the 
string storage space. We 
might write a machine code 
program to convert them that 
would use indexed 
addressing; the equivalent 
BASIC program illustrates 
this technique. 

Here, the array name AS() 
points the BASIC interpreter 
to the start address of the 
array elements, while BADDR 
does the same in Assembly 
language; similarly, the loop 
counter, K, points to each 
element of AS() in turn, just 
as the index register modifies 
BADDR in Assembly 
language 

memory (see page 58). Imagine that a group of 
people form a cinema club and that they meet 
every week to watch a film chosen by the club 
president. The film may be showing at any one of 
a dozen different cinemas, so when he has chosen 
the film for the week, the president writes details 
of the time and place on a postcard which he then 
sticks in the window of a shop in the centre of 
town. Club members don’t know where the film 
will be from week to week, but they know where 
the shop is, and the shop ‘points’ them to the 
correct cinema. The address of the shop is, 
indirectly, the address of the cinema. 

In indirect addressing mode it is possible to 

LIZ DIXON 

IANMcKINNELL 

Indicator Pointer 
Examples of indirect addressing 
do not often appear in everyday 
life. However, in this 
photograph the train indicator 
board contains the actual data 
wanted by the traveller, so the 
sign telling him where to find 
the board indirectly addresses 
that data. Indirect addressing in 
an Assembly language 
instruction means that the 
address supplied in the operand 
contains the address of the byte 
where the data is stored; the 
‘operand address is a pointer 

THE HOME COMPUTER ADVANCED COURSE 197 

WW ie aA 
[ 



write instructions that contain the address of a 
pointer, and which operate on the contents of the 
location that the pointer indicates (not on the 
contents of the pointer itself). ‘The advantages of 
this addressing mode are considerable, especially 
when combined with the indexed mode. 
Suppose, for example, that you write an 
Assembly language routine that searches a data 
table for a given character, and returns with the 
index position of the character. Suppose, also, 
that you want to keep several such tables in 
different places in memory, and that you want to 
use the same routine for searching any of them. If 
the routine is written so that it finds the base 
address of the search table indirectly via a given 
pointer location, then it can be used on any table 
provided that the contents of the pointer location 
are properly adjusted before the routine is called. 

In general, programs require mixtures of these 
modes rather than pure examples of single 
modes. The 6502 instruction LDA, for example, 
can be used in the following modes: 

It is convenient to use a 6502 instruction in this 
example because it shows the combinations of 
addressing modes so clearly. Notice that the two 
indirect versions of the instruction are in zero 
page as well as indirect and indexed modes. A 
table such as this may seem confusing at first 
sight, but actually using the various modes soon 
makes their significance clear, and so far we have 
used both LDA and ADC in two modes — 
immediate and absolute — without confusion. 

The table does answer the question posed in 
the last instalment of the course — how to tell the 
addressing mode of an instruction when the 
mnemonic is the same in every case? It can be 
seen that the format of the operand is different for 
every mode, and that the only ambiguity possible 
is whether an instruction such as LDA SYMB1 is 
zero page or absolute mode. An assembler 
program will resolve this for you, but if you are 
assembling the program by hand, you will have to 
determine whether SYMB1 has been defined as a 
single byte or as a two-byte quantity. 

In general, once you start using an assembler, 

198 THE HOME COMPUTER ADVANCED COURSE 

LDA #$34 Immediate Mode | 

you can forget about things like op-codes and the 
number of bytes per instruction, and concentrate 
on learning the programming techniques of 
Assembly language. It is important to understand 
the mechanics of machine code, but Assembly 
language used with a good symbolic assembler is 
a much better way of programming, combining 
the power of machine code with many of the 
facilities of high-level languages. 

Answers to Exercise On Page 178 
The Monitor program on page 118 was written in 
modules with expansion in mind, so adding a menu 
option is reasonably easy: _. 

SPECTRUM VERSIO | 2 

1) Adjust the initialisation by editing or adding the 
following lines: a 

- 1050 ra LT=5:DIM CS(LT):DIM OS(LT,24):DIM 
X$(16) Ge 8 

1150 LET CS=“ADGQB”:LET C1=-48:LET 
CmH10-CODE(CS()) 

1280 LET 0$(5)=“ B- BINARY DISPLAY" 

2) The input routine at line 2000 has already elicited - 
the start address, standardised it as a four-digit hex - 
number in AS, and converted it to a decimal number 
in DN, so the binary display subroutine reads: — 

7000 REM**HEX&BIN DISP S/R** 
7020 FOR P=DN TO (DN+15) 
7040 LET NM=P:GOSUB 3100: PRINT HS, 
7060 LET N=PEEK(P): LET NM=N 
7080 GOSUB 3000: PRINT BS;“ ”: 
7100 GOSUB 7300: PRINT BS 
7120 IF P=65535 THEN LET P=DN+15 
7140 NEXT P 
7200 RETURN 
7300 REM**BINARY BYTE S/R** 
7310 LET BS=*” 
7320 FOR D=8 TO 1 STEP-1 
7330 LET N1=INT(N/2) 
7340 LET R=N-2*N1 
7350 LET BS=STRS(R)+BS 
7360 LET N=N1 
7370 NEXT D 
7380 RETURN 

BBC/COMMODORE VERSION 
Copy the Spectrum version, with the following 

-amendments: 
1) Change the initialisation of LT and 0S() as in the 
Spectrum version above, and add C$(5)=“B’ to line 
1150. 
2) Line 600 transfers control to the command 
routine, so on the Commodore 64 and BBC Micro 

_ change this to: 

600 ON CM GOSUB 5000,5500,6000,6500,7000 

3) On the BBC change line 7060 above to 

7060 N=?(P):NM=N 

4) On the Commodore 64 change line 7350 above to: 

7350 BS=MIDS(STRS(R),2)+BS 



BRANCHING OUT 

In the past few years, Tandy’s name has 
become a familiar sight in the high street. 
But the company’s development spans over 
50 years, from being a small supplier of 
electrical components to one of the world’s 
largest retailers of microcomputers, as well 
as stocking a wide range of other domestic 
electronic goods. 

The Tandy Corporation, through its retail 
divisions, Tandy and the American Radio Shack 
chain, has 392 computer centres and over 5,500 
retail outlets in 76 countries. The company owns 
29 factories that supply equipment for sale under 
the Tandy and Radio Shack brand names. 

Tandy did not start life as an electronics 
retailer. It was founded in 1927 by Norton 
Hinckley and David Tandy as the Hinckley- 
Tandy Leather Company, a supplier of leather to 
shoe repairers in Beaumont, Texas. The first 
move towards becoming an electronics giant 
began in 1963 when David Tandy’s son, Charles, 
decided to expand the business, and bought a 
part share in a floundering Boston-based 
company called Radio Shack. This company had 
been operating since the twenties as a small-scale 
supplier of electrical components to radio hams 
and other electronics enthusiasts. Although it did 
most of its business by mail order and had a total 
of nine shops in the Boston area, it was making 
large losses. By 1967, Charles Tandy had 
managed to transform the company’s losses of 
$4,000,000 into a profit of $20,000,000. 

The next significant step was when Tandy took 
over a chain of department stores called Leonards 

in 1970, which gave it a foothold in the electrical 
consumer goods market. This area has now been 
developed to the point where the 1984 Tandy 
catalogue features 2,625 non-computer items, 
ranging from resistors to hi-fi equipment and 
synthesisers, and 396 computer products. 

Tandy arrived in the United Kingdom in 1973 
and quickly established itself in the high street as a 
retailer of electrical goods. In 1978, when the 
TRS-80 Model I microcomputer was launched in 
this country, Tandy had 120 stores. By 1983 the 
number had increased to 227 retail outlets 
throughout the country. Twenty-six of these are 
computer centres, specialising solely in 
computers, software and peripherals. 

The Model I established Tandy as a top 
computer manufacturer. It is a single-board 
machine with a Z80 microprocessor, at least four 
Kbytes of RAM, and a black-and-white screen 
with low resolution graphics. Disk drives are 
available and users can even run the CP/M 
business operating system on the machine. 

Tandy’s line has been kept up-to-date ever 
since, although it has never recaptured the market 
dominance of the Model I. The company quickly 
moved into the business micro market with its 
Model II and currently its range includes the 
Model 12 and Model 16, both of which are 16-bit 
machines, as well as a new IBM PC - compatible 
called the Model 2000. Model I computing 
moved upmarket with the Model III, which can 
be regarded either as an expensive home 
computer or as an economy business machine. 
Tandy has replaced the III with the Model 4 (and 
its portable version, the model 4P). These have 
better business facilities, but retain compatibility 

vince Moore, UK Sales : 
THE HOME COMPUTER ADVANCED COURSE 199 



with Model I and III programs — an unusual 
achievement in microcomputing. As a result, the 
TRS-80 models support an impressively wide 
range of software. 

Tandy attempted to re-establish itself in the 
home market with the Tandy Color Computer, a 
6809-based micro that shares many of the same 
features as the Dragon. Although never very 
successful in the UK, the ‘CoCo’ has sold well in 
the USA. A recent update and a mini-version 
called the Micro Color Computer indicate that 
Tandy has not given up in this area. 

Perhaps the most interesting line has been 
portable computers. Tandy became involved by 
selling a series of pocket computers based on the 
Sharp range. More recently, a deal with another 
Japanese company, Kyocera, and the American 
Microsoft software house produced the Model 
100, a book-sized battery-powered portable, 
complete with built-in BAsic, word processor, 
communications software and a diary. 

By 1984, several major firms in the 
microcomputer industry were beginning to suffer 
large losses, but business is looking healthy for 
‘Tandy, with a steady stream of new products from 
its design centres in Fort Worth, Texas, where the 
company is now based, and from the subsidiary 
TC Electronics Corporation based in Tokyo. 
With the advantages of a large manufacturing 
division and its wide network of retailers, the 
Tandy Corporation seems to be uniquely placed 
to take advantage of whatever developments may 

a y | m occur in the microelectronics business, and 
a | |. =a | a ll promises to be a long-term survivor. IAN McKINNELL 

The Tandy high street shop 
underlines the company’s 
strongest point: a single local 

BUSINESS 

Model 1 supplier for equipment, service 
and advice. The company’s 
Radio Shack name is equally 
well known in America 

Color Computer 
After the success of the Model 

|, Tandy launched a low-cost 
colour computer 

so aati 

Micro Color Computer 
The MC10 is a budget colour 
computer for beginners 

fa tae 

The original Tandy TRS-80 
AP CELELECLLOELLEEL Ly ESET IOI LIE, 

Tandy’s first business micro g 
DELLE I ELIES, LBS TIEE IEL EES 

Model Ill 
Compatible with the Model 1, Sa ea a a a ee Ss eee the Il is a more business-like 

YORI ILD RR OSE ODEO We ; 

machine 

Color Computer 2 
A full keyboard has been 
added to the Color Computer 
Rarer ie 

Model 4 Model 4P 
An enhanced Model Ill withan A portable version of the 
80-column screen | Model 4 

oy, 

LT TOT EE EEE 

Model 12 : Pocket Computers 
Atop of the range single-user [4 Tandy has sold four of 
business computer Sharp’s pocket computers/ 
SEIS. PIAS calculators under its own 

name 
Model 16 SLIT ITIL III L LD CSTE LEST SLID TIE 
A multi-user 68000-based z 
micro running under the Xenix Model 100 
operating system 2 An immensely popular book- 
Ee sized battery-powered 

portable with built-in software 

Tandy Family Anew machine compatible 
SEER PIED IIE OIE EI CEILS E PETE ELLE: bs 

with the IBM Personal 

Computer 
, PLR aR OED TET REE TO ORES: 

200 THE HOME COMPUTER ADVANCED COURSE 

ing Mia wm Ria Walt i Sic RN “Aa EN I ss 



cut * Special y comm Lissi 
Ompu OU! fern £ dvancet 

Cpenvnccnnnsmneregennit heomamensercraady ipreoveneeee a (a Th 

i 

poner SAAR RRA MAL NMOOESILDPECSESPEEEOEPOLRESELDLLNADNGOSSLLLLELLLODDC CYL CL BAPSNL A 

* FE ae C =e oli th De ne cassette FREE with Issue ll _ 
| e Home Computer Advanced Course_ ay 

vp carvenvereeveronsenediponsiin 

ock the full po ntial o: = computer you star The ‘Pisdscehnbler | iraablates the toads 
Shack ver- aa ce 

alka ;own language — nach =) code. ‘The ~ ‘sion ‘of he ‘program ‘back into” Ea te id bai as ee 

_Hom omp : : ourse 3 9 you mnemonics. for. your-sc rutiny—- Bass See i tetas OE Seer | 

| to do just ae ad se ries on machine o code. The Detug F oo. enables you to run ‘the program _ prc ny ow you ma t Eos b eaatlte acted ais a 7 

‘selloyouraid 7) ar ER SR EE eae CE Eee a ee MNO eines Pegerem Muar Paynes mew He See SL a ee 4 

alin Di ous 
| | 

pg ag er in one ps kage: 3 r 7 r 5 r ~ pacl aa to obtain a 

The Edit —-enables_you co ARE LES ave : 

_written in As embly' language | mnemonics, , from |t the 7 

. | keyboard, or to load them from tape. ‘You can the | 

| “modify th Aeedial 

lak =p $a TS Sag SO 

‘Tou 

these facilities - — — and you'd 
sounds. They're fr -with Issue 11 of — 

Som uter Advanced Course. This suite of _ 
advanced - programs was specially commissioned 

Boo: han bee oid beds ee from a leading software company, Personal Software — 
Bah _ Services, to be a valuable programming aid for — 

readers. With its aid you'll learn how td make your 
a sonnel ee ee 

terete ring you I Hours . of 4 “micro ‘do things t that will amaze y ou : : seemingly — 
- instantaneous ~ ‘program execution and Gassing. 
i thing: fast afaphica animation. 

mov ct btcbistot ie henry sehr searc ch tof specified uence a = 

“+4. shod the pesto Re di: sg outa 
. prehensive F Home ¢ Computer User’ S | Assembler! ce 

me sks oa a a | 

ae sn a AVAGHINE 
| : 

| 

L ‘Gow UR 2 



a Ma yc ca VN blame 2 

- amie 3 OAS ee i >= naa eaten 

NM ph stall ee 

pe bay a ae Sate Wah sect 

1 ai 
einai 


